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Abstract

Preferences differ in the population, and this heterogeneity may not be adequately

described by observed characteristics and additive error terms. As a first contribution,

this study shows that preference heterogeneity can be represented graphically by means

of violations of the Weak Axiom of Revealed Preference (WARP), and that computing

the minimum number of partitions necessary to break all WARP violations in the

sample is equivalent to computing the chromatic number of this graph. Second, the

study builds the bridge between revealed preference theory and cluster analysis to

assign individuals to these partitions (i.e. preference types). The practical methods

are applied to Dutch labour supply data, to recover reservation wages of individuals

who belong to particular preference types.
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1 Introduction

In many datasets on consumption and labour supply, individuals are observed only once.

The estimation of demand functions and labour supply functions then requires the pooling

of individuals. Although these estimation techniques take variation in observed character-

istics into account, the variation in demand and labour supply outcomes cannot be fully

captured by observed characteristics. This is also reflected in the typically low R2 : only a

small fraction of the variation in outcomes is captured by variation in observed characteris-

tics. In other words, additive error terms are too restrictive to properly address unobserved

preference heterogeneity. Lewbel (2001), for instance, argued that implementing additive

errors comes very close to a representative agent assumption.

Instead of pooling all individuals and adding error terms to the demand or labour sup-

ply functions, the current study follows a different approach. More specifically, this study

partitions a dataset from the Longitudinal Internet Studies for the Social Sciences in the

minimum number of sets so that the utility maximisation hypothesis holds simultaneously

for all individuals within a set. The underlying principle is Occam’s razor, which states

that a simpler theory is preferable to a complex one, thereby promoting testability. For this

reason, this study focuses on the minimum number of utility functions necessary to ratio-

nalise the relevant consumption and labour supply choices in the sample. The true number

of utility functions may be higher, but this is irrelevant from the perspective of rational-

ising behaviour. By restricting the number of utility functions, more convincing recovery

and prediction exercises may be executed, given that multiple individuals have the same

utility function. To this end, a proposal by Kalai et al. (2002) is translated to deal with

consumption and labour supply data from standard budget surveys.

Related literature Kalai et al. (2002) proposed to partition a combination of (general)

choice sets in the minimum number of partitions so that the choices within each partition

could be rationalised by the same ‘rationale’. The concept of rationality referred, in their

setting, to selecting the elements that corresponded to some unobserved binary relation. In

this way, the authors presented a framework to deal with ‘bounded rationality’, in particular,

violations of the ‘Independence of Irrelevant Alternatives’ (IIA) Axiom. Adding or removing

elements from the choice sets may lead to inconsistent choices, which are explained by the

fact that different choice sets are subject to different rationales.

Apesteguia and Ballester (2010) and Demuynck (2011) investigated the computational

complexity of rationalising choices by means of a minimum number of rationales and a fixed

number of rationales, respectively. Both studies concluded that the problem is computa-
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tionally very difficult (e.g. NP–complete). For this reason, Apesteguia and Ballester (2010)

linked the rationalisability question to a graph problem, and suggested that analyses of the

minimum number of rationales could borrow from algorithms from the computer science and

operations research literature.

The studies of Apesteguia and Ballester (2010), Demuynck (2011) and Kalai et al. (2002)

are purely theoretical. Their framework is very general, in the sense that choice correspon-

dences may be multi–valued and choice sets must not necessarily correspond to linear budget

sets. Furthermore, the focus of Apesteguia and Ballester (2010), Demuynck (2011) and Kalai

et al. (2002) is on bounded rationality, in particular, violations of the IIA assumption. The

current study brings the idea of the ‘minimum number of rationales’ into practice, by com-

puting the minimum number of utility functions necessary to describe all consumption and

labour supply choices in a sample of heterogeneous agents.

Revealed preference To compute the minimum number of utility functions, axioms from

revealed preference theory are used, in particular, the Weak Axiom of Revealed Preference

(WARP). Revealed preference axioms–in the spirit of Samuelson (1938)–are attractive in the

current setting. They impose consistency conditions on observed consumption and labour

supply choices independent of a functional form for the preferences. Conveniently, Afriat

(1967), Diewert (1973), and Varian (1983) formulated a so called restricted–domain version of

revealed preference theory, which can be applied when only a finite number of price–quantity

observations is available (as opposed to the entire demand or labour supply function, or choice

correspondence). This is particularly useful to deal with a (finite) sample of individuals in

which each individual made a specific consumption and labour supply choice (in terms of

the consumption expenditures and the number of hours worked).

In this sense, the current study is similar in nature to the one by Crawford and Pendakur

(2013), who computed lower and upper bounds on the (minimum) number of preference

types among consumers. Based on a (random) sequence of observations, Crawford and

Pendakur (2013)’s algorithms constructed partitions of the sample that are consistent with

the utility maximisation hypothesis. Because the outcome of these algorithms depends on

the (random) ordering of observations, the authors proposed to run the algorithms multiple

times. Finally, Crawford and Pendakur (2013) used their sample to infer that the number of

types (i.e. sets of individuals whose behaviour may be described by a single utility function)

in the population is at most 12. It is worth noting that Crawford and Pendakur (2013) used

the Generalised Axiom of Revealed Preference (GARP), which is necessary and sufficient for

behaviour to satisfy the utility maximisation hypothesis. However, given that the GARP also

implements transitivity, these conditions are known to be computationally very demanding.
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In a setting with only two goods (i.e. if transitivity is not important, see Rose (1958)),

it has been shown that WARP is equivalent to the Strong Axiom of Revealed Preference

(SARP). More generally, Cherchye et al. (2015) formulated conditions on prices and incomes

under which transitivity has no specific testable implications. Whenever these conditions

hold, SARP is equivalent to WARP. Finally, the current study takes the hypothesis of utility

maximisation as given. Rather than treating rationality as an assumption which is subject

to empirical testing, rationality is the identifying assumption. The focus is on recovery of

preference types rather than testing of the rationality hypothesis.

Contributions The current study complements the paper by Crawford and Pendakur

(2013) in at least two ways.

First, a graph–theoretical representation of preference heterogeneity is provided for the

current consumption and labour supply framework. This follows the suggestion by Apesteguia

and Ballester (2010), who argued that the literature on graph theory may be a starting point

to address the computational complexity of the problem. The graphical representation is

based on the Weak Axiom of Revealed Preference (WARP). More specifically, the vertices in

this graph correspond to all individuals and the edges correspond to pairwise inconsistencies

of these individuals with WARP. It is shown that the chromatic number associated with this

graphical representation is equivalent to the minimum partition necessary to remove WARP

violations, and thereby also bounds the minimum number of utility functions in the sample

(from below). Furthermore, the chromatic number equals the minimum number of utility

functions when WARP is equivalent to SARP. There exist numerous algorithms to com-

pute the chromatic number, both exactly and approximately (e.g. by a greedy algorithm).

This opens the door for many new applications of revealed preference theory and operations

research to deal with interpersonal preference variation. In this sense, the current study ex-

tends results by Talla Nobibon et al. (2011) who provided approximation algorithms to deal

with intra–household preference heterogeneity (i.e. between two members of the household)

rather than inter–household heterogeneity.

Second, Crawford and Pendakur (2013) focused on computing the number of preference

types in the sample. The current study also deals with the assignment of individuals to

specific preference types. To this end, the nonparametric (revealed preference) conditions

(i.e. WARP) are complemented with an objective function that minimises the within–type

variation in observed characteristics (i.e. the within–cluster sum of squares corresponding

to demographic variables). This allows researchers to select a particular partitioning of

the sample, depending on the desired characteristics and criteria, without violating the

consistency requirements from revealed preference theory. As a result, this so called revealed–
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preference–consistent clustering combines the empirical appeal of cluster analysis and the

theoretical robustness of revealed preference.

Data The methods are applied to a sample from the Longitudinal Monitoring Survey for

the Social Sciences (LISS), which contains data on consumption and labour supply choices

of Dutch households. This application is interesting for several reasons. First, as in many

labour supply studies, the household members have preferences over private consumption

and leisure (see e.g. Blundell et al. (2007) and Cherchye and Vermeulen (2008)). The issue

of transitivity is irrelevant in this two–goods setting. Second, labour supply data contain

rich cross–sectional variation in wages, which can be better exploited by the novel method-

ology. Alternative methods such as stochastic revealed preference conditions (in the spirit

of McFadden (2005) and Falmagne (1978)) project all outcomes per cross–section on a sin-

gle budget hyperplane, as a result of which a considerable amount of information is lost.

Finally, the labour supply application will clearly indicate that the preference types have

a large impact on important estimates such as reservation wages. Indeed, the reservation

wages vary considerably across the different preference types. This emphasises the relevance

of the presented methods.

The rest of the paper unfolds as follows. Section 2 contains the main methodological

contributions (Subsections 2.2–2.3). Section 3 presents an application to Dutch labour supply

data from the LISS. Section 4 concludes.

2 Preference heterogeneity: graph–theoretical approach

Subsection 2.1 sets the stage by introducing revealed preference theory and the notion of the

minimal level of preference heterogeneity.1 The contributions of this study are in Subsections

2.2 and 2.3. Subsection 2.2 presents an equivalent graph–theoretical solution concept, that

has received much attention in the operations research and computer science literature.

Subsection 2.3 opens the door for the recovery of specific preference types by means of

revealed–preference–consistent clustering.

1Strategies to recover the ‘minimal level of heterogeneity’ using revealed preference techniques have be-
come increasingly popular, see e.g. Crawford and Pendakur (2013) and Adams et al. (2015). Adams et al.
(2015) used revealed preference theory to recover the minimal amount of taste variation necessary to ratio-
nalise patterns of tobacco consumption. These authors also addressed ‘taste variation’ across the sample, but
they imposed more structure on individual utility functions. In particular, taste heterogeneity is captured
by linear perturbations to a base utility function.

5



2.1 Revealing preference heterogeneity

Set-up Assume a sample of individuals i ∈ N and let C represent a collection of goods

(which may include consumption and leisure). Per individual i ∈ N, the econometrician

observes a vector of observed attributes ai and a dataset Si = {pi,qi}. Dataset Si consists

of a price vector pi ∈ R|C|
++, containing the strictly positive prices of |C| commodities, and a

consumption vector qi ∈ R|C|
+ , containing i’s consumption. The individual’s total expenditure

is given by yi = p′
iqi. The methods in this paper take rationality of all individuals i ∈ N as

given, i.e.

qi = argmax
q

Ui(q) s.t. p
′
iq ≤ yi.

Given that utility functions Ui(·) are unobserved, rationality of the full sample S =

{pn,qn}n∈N requires that there exist utility functions such that the above utility maximi-

sation problem is solved for all individuals. However, the number of utility functions in the

sample can be bounded, see Definition 1.

Definition 1 τ−Rationalisability. Given a dataset S = {pn,qn}n∈N of |N | rational indi-
viduals. Dataset S is τ−rationalisable if there exists a set of utility functions Ũt(·) with

t ≤ τ such that for each n ∈ N :

∃t : qn = argmax
q

Ũt(q) s.t. p
′
nq ≤ yn.

Definition 1 introduces a formal measure τ of the number of utility functions in the

sample. On the one hand, 1−rationalisability requires that S is rationalised using only

one utility function Ũ(·) = Un(·) for all n ∈ N. This imposes strong restrictions on the

shape of Ũ(·). After all, Ũ(·) must be such that the observations {qn}n∈N maximise |N |
different optimisation problems simultaneously–using the same utility function. In cases

where 1−rationalisability is violated, one should avoid pooling all individuals of the cross

section. The resulting recovery and prediction of q in new price–income situations may be

biased. At the other extreme, |N |−rationalisability puts very little structure on the utility

functions. Each individual can belong to a distinct preference type Ũ1(·) ̸= ... ̸= Ũ|N |(·). The
resulting model is highly permissive, as there is only one observation per utility function.

Due to the lack of empirical bite, such model is unapt for convincing recovery and prediction

analyses.

For this reason, the focus of the current paper is on the minimum number τ ∗ of utility

functions necessary for rationality in the sense of Definition 1. More generally, the focus on

the minimal degree of heterogeneity fits with the idea of Occam’s razor, in that the ‘most

simple and parsimonious’ model is selected that still explains the data. A formal description
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of τ ∗ is in Definition 2.

Definition 2 τ ∗. Given a dataset S = {pn,qn}n∈N of |N | rational individuals. τ ∗ is

the minimum number of preference types in the sample if S is τ ∗−rationalisable but not

(τ ∗ − 1)−rationalisable.

Revealed preference In a first step, the abovementioned problem is translated in terms

of the Weak Axiom of Revealed Preference (WARP). Samuelson (1938) and Houthakker

(1950) have shown that consistency with WARP is a necessary condition for the existence of

a well–behaved utility function that rationalises the underlying data, in the sense that the

data are utility maximising. WARP is computationally much easier compared to the Strong

Axiom of Revealed Preference (SARP) which also imposes transitivity on the individual

preferences. Furthermore, WARP is equivalent to SARP (let WARP = SARP indicate

that transitivity has no separate testable implications) in two–goods settings, or in settings

described in Cherchye et al. (2015).

The revealed preference axioms will allow us to bound the number of utility functions

regardless of their parametric structure. Definition 3 formally presents the notions of parti-

tioning, WARP–partitions and τ̂ .

Definition 3 Given a dataset S = {pn,qn}n∈N of |N | individuals.

• A combination of sets V1, ..., VT provides a partitioning of N if

– ∀s, t ≤ T : Vs ∩ Vt = ∅,

– ∀n ∈ N it holds that n ∈ V1 ∪ ...∪ VT .

• A specific partition Vt of N is a WARP–partition if and only if ∀ i, j ∈ Vt : i and j

satisfy WARP, that is,

p′
iqi ≥ p′

iqj ⇒ p′
jqj < p′

jqi.

• τ̂ is the minimum number of WARP–partitions V1, ..., Vτ̂ of N. Formally, N can be

partitioned in τ̂ but not in τ̂ − 1 WARP–partitions.

The first bullet point states that a partitioning is an exact set cover of N using subsets

V1, ..., VT .

The second bullet point defines a WARP–partition as a subset Vt in which the Weak

Axiom of Revealed Preference (WARP) holds for all i, j ∈ Vt. Assume that WARP is violated:

p′
iqi ≥ p′

iqj and p′
jqj ≥ p′

jqi. Then p′
iqi ≥ p′

iqj implies that the consumption bundle

7



of j was affordable for i. Agent i preferred his bundle over the bundle of j. Similarly,

p′
jqj ≥ p′

jqi implies that the consumption bundle of agent i was affordable for j. Thus,

agent j preferred his bundle over the corresponding bundle of i. However, there is no utility

function Ũ(·) (= Ui(·) = Uj(·)) that simultaneously attributes (strictly) higher utility to

i and j. Conditional on the assumption of utility maximisation, it must be the case that

agents i and j have different preferences Ui(·) ̸= Uj(·). For this reason, a necessary condition

for a set of individuals i, j ∈ Vt to behave consistently with a homogeneous utility function

is that Vt is a WARP–partition.2

The third bullet point defines τ̂ as the minimum number of WARP–partitions of N.

Proposition 1 combines the fact thatN cannot be partitioned in less than τ̂ WARP–partitions

and that WARP is nonetheless necessary for the existence of a utility function so that

the utility maximisation hypothesis holds simultaneously for all individuals within the set

(Samuelson (1938) and Houthakker (1950)).

Proposition 1 Consider a dataset S = {pn,qn}n∈N of |N | rational individuals and the

corresponding values τ ∗ and τ̂ . Then τ ∗ ≥ τ̂ .

If WARP = SARP this can be strengthened to τ ∗ = τ̂ . While τ ∗ is a relatively theoret-

ical concept, τ̂ is defined in terms of observables. Yet, the computation of τ̂ is difficult in

practice (as shown in Subsection 2.2). Let us now introduce the main contributions of this

paper. Subsection 2.2 shows that τ̂ is equivalent to the so called chromatic number of the

graphical representation of WARP violations. The computation of the chromatic number

has been extensively studied in the operations research and computer science literature, i.e.

several algorithms have been proposed. Next, Subsection 2.3 introduces a program to ‘con-

struct’ WARP–partitions of the data that moreover minimise the intra–partition variation

in observed characteristics. Otherwise stated, this program computes revealed–preference–

consistent clusters.

2.2 The chromatic number as measure of preference heterogeneity

The following method recovers τ̂ , i.e. the minimum number of WARP–partitions in the

sample. This is based on a graph–theoretical representation of the revealed preference con-

ditions.3 In particular, it is shown that the chromatic number (explained below) applied to

2Alternatively, SARP requires that for all i, k, ..., z, j ∈ Vt : p′
iqi ≥ p′

iqk, ...,p
′
zqz ≥ p′

zqj ⇒ p′
jqj <

p′
jqi, thereby excluding cycles of observations. Houthakker (1950) has shown that consistency with SARP

is both a necessary and a sufficient condition for the existence of a well–behaved utility function that is
maximised by the underlying observations.

3This is not the first combination of revealed preference and graph theory. Recently, Dean and Martin
(2015) used insights from the computer science and operations research literature to compute the ‘mini-
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the graph of WARP violations is exactly equal to τ̂ .

Example Consider the following simple example. A sample consists of six independent

individuals, represented as vertices in Figure 1. A pair of vertices (i, j) is connected if and

only if the observations of the corresponding individuals i and j violate WARP. As a further

implication, i and j belong to separate preference types.

.....

A

.

F

.

B

.

E

.
C

.
D

......

Figure 1: Graph with individuals as vertices and pairwise violations of revealed preference
axioms as edges

As such, the graph in Figure 1 implies that individual A cannot belong to the same set as

F, B cannot belong to the same set as E, C cannot belong to the same set as D, and finally,

D, E, and F must be in three distinct sets. The question is how many WARP–partitions are

minimally required to cover all individuals (vertices in Figure 1). By starting from individual

A, it is possible to form a WARP–partition of three individuals (A, B, and C). Individuals D,

E, and F are automatically excluded from this set, as it always contains at least one of their

adjacent individuals. Thus, D, E, and F constitute three distinct preference types, resulting

in a total of four types. However, this number overestimates the true minimum number of

WARP–partitions. After all, we can match A and E, B and D, and C and F, resulting in a

total of only three types.

This example shows that the minimum number of WARP–partitions is easily overesti-

mated by algorithms that follow some random ordering of the data. In a sample of six

people, it is fairly straightforward to solve the problem by visual inspection. In a sample of

more than 100, the problem is very complex. A brute force algorithm would then require

mum’ cost of breaking revealed preference cycles in consumer data. While these studies used the minimum
set covering problem to compute the minimum cost associated with the observations to be removed from
the data, the current study computes the chromatic number in order to bound the minimum number of
distinct preference types in a sample. Similarly, Smeulders et al. (2014) and Smeulders et al. (2015) used
graph–theoretical arguments to formulate efficient methods to test consistency with the collective model and
compute goodness–of–fit measures, respectively.
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the analysis of 2100 subsets of the data. The first contribution of this study is that it links

the abovementioned partitioning problem to the computation of a number that has received

much attention in the operations research and computer science literature.

The chromatic number Consider the following two–step procedure to identify (bounds

on) τ ∗. In the first step, graph G is constructed, in which each vertex i represents an

individual and each connected pair of vertices (i, j) indicates a violation of WARP. Edges

(i, j) indicate that i cannot belong to the same type as j. The second step computes the

so called chromatic number of graph G : χ(G). The chromatic number gives the smallest

number of colours (labels) necessary to obtain a (proper) vertex colouring. A (proper) vertex

colouring is an assignment of colours to the different vertices in G in such a way that all

adjacent vertices obtain different colours. The chromatic number is always bounded between

1 (i.e. in an edgeless graph) and |N | (i.e. in a complete graph). The following shows, formally,

that τ̂ = χ(G).

Proof. Proof of τ̂ = χ(G). Let G be constructed in line with the abovementioned approach.

1. Suppose that τ̂ > χ(G). By definition of τ̂ , this implies that there exists (at least)

one pair of individuals (i, j) who got the same colour / label t ≤ χ(G) and for whom

p′
iqi ≥ p′

iqj and p′
jqj ≥ p′

jqi. By construction of G, the latter implies that i and

j are adjacent. By definition, however, a vertex colouring cannot include adjacent

individuals, so that the colouring in which i and j get the same label cannot exist.

Thus, τ̂ ≤ χ(G).

2. Suppose on the other hand that τ̂ < χ(G). By construction of G, a (proper) vertex

colouring is necessary for the construction of WARP–partitions. By definition of the

chromatic number, χ(G) is the smallest number of colours/labels to obtain a (proper)

vertex colouring. Hence, τ̂ ≥ χ(G).

Thus, the chromatic number of graph G (χ(G)) is equivalent to the minimum number

of WARP–partitions (τ̂) in the data. Furthermore, τ̂ bounds τ ∗ by Proposition 1. The first

contribution of this study is formally presented in Proposition 2.

Proposition 2 Given a dataset S = {pn,qn}n∈N of |N | rational individuals and the cor-

responding value τ ∗. Let χ(G) be the chromatic number associated with graph G, with G

consisting of vertices i, j ∈ N and edges (i, j) if p′
iqi ≥ p′

iqj and p′
jqj ≥ p′

jqi.

Then τ ∗ ≥ χ(G).
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If WARP = SARP this can be strengthened to τ ∗ = χ(G). The intuition behind this

proposition is straightforward. Suppose that the number of WARP violations is high. This

will create a large number of edges in graph G. Adjacent nodes cannot be pooled, which

raises the chromatic number τ̂ = χ(G) and hence also τ ∗. Three final remarks are in order

here.

1. If WARP ̸= SARP , χ(G) provides only a lower bound on τ ∗. The reason is that

edges e correspond to violations of WARP, that is, between any pair of individuals.

By applying the vertex colouring problem, these violations are eliminated. However,

this does not necessarily break violations of SARP. It is possible that individuals i, j, z

are characterised by a violation of SARP (and not by a violation of WARP), which

can occur when the number of goods in the analysis is more than two. In this case,

the behaviour of i, j, z is such that p′
iqi ≥ p′

iqj and p′
jqj ≥ p′

jqz and p′
zqz ≥ p′

zqi.

Notice however that consistency (i.e. with the GARP/SARP instead of WARP) of the

individuals within preference types, and hence the prevalence of SARP violations, can

easily be examined in a final step (i.e. after the vertex colouring). Furthermore, in the

application in Section 3, WARP = SARP, so that χ(G) effectively corresponds to τ ∗.

2. The computation of the chromatic number χ(G) for an arbitrary graphG is known to be

NP–hard, see Karp (1972). Exact algorithms may be feasible for small to moderately

sized graphs only. For this reason, the greedy algorithm has been proposed, which

approximates the chromatic number (from above). Both algorithms are available in the

MathGraph package, using the ‘color’ command–specifying either ‘optimal’ or ‘greedy’

(default). In the current application (Section 3, with |N | = 106) the greedy algorithm

actually gives the true chromatic number. Furthermore, the equivalence of τ̂ and χ(G)

implies that the literature on approximations of χ(G) is also useful in this revealed

preference framework. It has for instance been shown that the chromatic number

is bounded by the number of edges in G, |E|, in particular, χ(G) · (χ(G) − 1) ≤
2 (|E|) . As a consequence, τ̂ · (τ̂ − 1) is always bounded from above by the number of

WARP violations multiplied by two. More generally, there is a vast literature on the

computation of χ(G) for graphs G with specific properties.

3. A vertex colouring immediately provides an exact set cover of all individuals in the

cross section. This does not shed light on the maximum number of individuals who

can belong to one preference type, i.e. the largest possible WARP–partition. To

identify the largest WARP–partition, the maximum independent set problem could be

considered. This problem finds, in graph G, the largest possible set Ñ of vertices that

are not adjacent.
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2.3 Revealed–preference–consistent clustering

The previous subsection introduced a practical method to compute τ̂ , by using the chro-

matic number applied to the graph of WARP violations. The current subsection addresses

two further concerns. The first concern is that the WARP–partitions recovered in Subsection

2.2 are not necessarily unique. There may be a finite number of (proper) vertex colourings

containing χ(G) colours, and therefore also a finite number of possible partitionings of N

in WARP–partitions. More specifically, the number of partitionings of G in χ(G) sets is

equivalent to the chromatic polynomial of G, P (G,χ(G)), divided by the number of permu-

tations of the colours, χ(G)!. This number can be very large. In tree graphs–with exactly

one path between each pair of vertices–for instance, the number of different partitionings

is χ(G)·(χ(G)−1)|N|−1

χ(G)!
. The second concern is that observed characteristics, other than the cho-

sen consumption and labour supply, are relevant when constructing preference types. The

impact of preference heterogeneity on consumption and labour supply was filtered by break-

ing WARP violations and by allowing for multiple utility functions. The question remains

whether this heterogeneity is (partly) captured by observed characteristics, or completely

unobserved.

Let ai reflect an h−dimensional vector of observed characteristics of individual i and let

ϕt represent a vector of mean observed characteristics in partition Vt. The aim is to create

clusters V1, ..., Vτ in a way that minimises the within–cluster distance between an and ϕt

(d(an, ϕt)) under the restriction that the observations within each cluster can be described

by a single, homogeneous utility function U(·). In this sense, the clusters V1, ..., Vτ define

preference types that are also as homogeneous as possible in terms of observed characteristics

an. To bring this into practice, it is useful to adopt the following notation. Let snt denote

binary variables that indicate whether individual n belongs to subset (or cluster) t. Each

variable snt indicates whether individual n belongs to the t−th (with t ≤ τ) cluster (snt = 1)

or not (snt = 0).

As a first step, note that each WARP–partition satisfies an important necessary condi-

tion for the existence of a utility function that rationalises the within–cluster consumption

and labour supply choices. Thus, the clusters Vt must at least be WARP–partitions. By

definition, WARP–partitions cannot include pairwise violations of WARP. Therefore,[
p′
iqi ≥ p′

iqj

p′
jqj ≥ p′

jqi

]
⇒ sit + sjt ≤ 1. (1)

In other words, if the pair of observations (i, j) is characterised by a WARP violation, the

corresponding individuals i and j cannot belong to the same WARP–partition. Therefore,
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they must have distinct preference types. Formally, i, j ∈ Vt is impossible.4

As a second step, each individual n ∈ N must belong to exactly one partition. For this

reason,

∑
t≤τ

snt = 1. (2)

By definition of τ̂ it follows that conditions (1) and (2) cannot simultaneously hold

unless τ ≥ τ̂ , i.e. the number of subsets used to partition S must be (at least) as large as

the minimum number of WARP–partitions (and hence the chromatic number χ(G) of the

corresponding graph).

As a final step, a distance function d(an, ϕt) is added to the problem, in order to select

the set of clusters / partitions V1, ..., Vτ that minimise the variation in observed charac-

teristics. A well–known parametrisation of this function is d(an, ϕt) = ||an − ϕt||2, with∑
t≤ τ

∑
n∈Vt

(||an − ϕt||2) the within–cluster sum of squares (WCSS). The structure imposed

on the distance function might seem at odds with the nonparametric formulation of utility

functions and with the general, nonadditive forms of preference heterogeneity. It is important

to note that the choice of the distance function is not crucial for the presented methodology

to work. However, the chosen specification allows for a direct comparison with unconstrained

k−means clustering. Finally, the nonparametric methodology eliminated very general forms

of preference heterogeneity. In order to select one (proper) vertex colouring as the desired

set of preference types, a stronger selection criterion is desirable. Minimising the WCSS is

equivalent to minimising the following objective function:

∑
n∈N

∑
t≤τ

(
||an − ϕt||2

)
snt.

The problem is now completely defined in terms of binary variables snt. Thus, clustering

the ‘nearest’ individuals–by minimising the WCSS–in a way that is consistent with revealed

preference theory, boils down to solving Problem 1.

4When WARP ̸= SARP, conditions (1) could be modified as follows:
p′
iqi ≥ p′

iqk

p′
kqk ≥ p′

kql

...
p′
zqz ≥ p′

zqi

 ⇒ sit + skt + slt + ...+ szt ≤ α

with α the number of observations in the cycle minus one. Of course, implementing such set of conditions
would make the program computationally much harder. As indicated earlier, WARP = SARP in Section
3.
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Problem 1 RP–consistent clustering of |N | individuals in τ clusters. Individuals are char-

acterised by dataset S = {pn,qn}n∈N and vectors of observed characteristics an (∀n ∈ N),

clusters are characterised by ϕt (t ≤ τ).

s∗nt = argmin
snt

∑
n∈N

∑
t≤τ

(
||an − ϕt||2

)
snt

s.t.

1 : ∀n ∈ N :
∑
t≤τ

snt = 1;

2 : ∀i, j ∈ N, ∀t ≤ τ :

[
p′
iqi ≥ p′

iqj

p′
jqj ≥ p′

jqi

]
⇒ sit + sjt ≤ 1;

with snt ∈ {0, 1}.

The solution s∗nt immediately yields WARP–partitions Vt = {n : snt = 1} that are also

as close as possible in terms of observed characteristics an. Given that an, pn and qn are

observed for all n ∈ N, τ is given and ϕt is given in each iteration (see below), Problem 1

can be implemented in terms of a linear programming problem with binary variables.

1. How does this compare to standard k − means clustering? The standard clustering

approach minimises the sum of squared differences between elements in k clusters.

Suppose first of all that dissimilar (in terms of ai, aj) observations i and j are more likely

to violate WARP: p′
iqi ≥ p′

iqj and p′
jqj ≥ p′

jqi. This implies that a considerable part

of the relevant preference heterogeneity (reflected by WARP violations) is filtered out

by partitioning the individuals on the basis of an. Formally, the solution to Problem 1

and the outcome of unconstrained clustering will be similar. Suppose on the other hand

that there is no clear relationship between dissimilarity in an and the probability of

violatingWARP. This implies that the relevant preference heterogeneity may be present

even within clusters of observationally equivalent (in terms of an) individuals. Formally,

the solution to Problem 1 and the outcome of unconstrained clustering may be very

different. There may be no homogeneous utility function describing the behaviour qn

of all individuals n in the unconstrained cluster. Recovery and prediction of behaviour

in new price–income situations are then impossible.

2. In practice, researchers can determine ϕt by iterative refinement. In a first step, assume

initial means ϕt that cover a wide enough part of the data, e.g. distinct percentiles of

the variables’ distributions. In a second step, solve Problem 1. This yields a solution
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for snt and a set of WARP–partitions V1, ..., Vτ . Finally, define new values ϕt as the

mean observed characteristics in Vt (i.e. ϕt = 1
|Vt|

∑
n∈Vt

an) and re–run the algorithm

until convergence. In what follows, age is treated as the unidimensional criterion. This

not only provides insight in the relative magnitude of unobserved versus age–related

preference heterogeneity, but also attaches a specific interpretation to the preference

types. Of course, researchers can apply these techniques for any desired set of criteria.

3. Finally, Program 1 is solved relatively fast (i.e. in less than one minute) for the sample

under consideration. For larger samples, it may be impossible to solve the linear

programming problem with binary variables. In such case, researchers may apply a

modified version of the standard k−means clustering algorithm that takes constraints

into account, see e.g. Wagstaff (2001). In each assignment step, observations are

added to the closest cluster under the restriction that the relevant constraint (in casu

condition (1)) is not violated. This is no longer guaranteed to result in a feasible

allocation when τ = χ(G). However, this can easily be checked.

3 Application to Dutch labour supply behaviour

3.1 Data

The labour supply data in this study come from the Longitudinal Internet Studies for the

Social Sciences (LISS). This dataset contains detailed information on consumption and time–

use choices by Dutch households. The sample consists of the collection phases in 2009, 2010,

and 2012. Students, pensioners, self–employed and job seekers are dropped. After all, job

seekers are unemployed due to labour demand restrictions rather than unemployed by choice.

Attention is restricted to childless couples consisting of a household head and a wedded or

unwedded partner. This gives 106 observations. Appendix A describes the data in more

detail.

Table 1 summarises male and female wages, weekly income and consumption expendi-

ture. The mean wage of men (14.46 EUR/hour) is clearly higher than the mean wage of

women (12.28 EUR/hour). The difference in total labour income is even more outspoken

(except for the highest percentiles). On the other hand, women’s private expenditure (120.84

EUR/week) is higher than men’s private expenditure (95.70 EUR/week). The non–labour

income (per household member) is the difference between private expenditure and the labour

income earned, per week. Therefore, each household member can be treated as a separate

decision maker, in line with the collective labour supply model by Chiappori (1988, 1992).

Cherchye et al. (2012) applied a collective labour supply model with home production to a

15



similar sample from the LISS. In particular, the current application is similar to the ones by

Blundell et al. (2007) and Cherchye and Vermeulen (2008). These authors also focused on

the trade–off between private consumption and leisure.5

However, the current framework not only addresses preference heterogeneity within cou-

ples6, but also general (nonadditive) forms of preference heterogeneity across couples.

min Q1 median mean std dev Q3 max
male wage 2.06 11.64 14.04 14.46 3.67 17.54 23.10
female wage 5.85 9.68 11.95 12.28 3.40 13.99 22.93
male income 0 451.92 557.69 557.18 193.45 653.85 1,076.4
female income 0 230.77 303.49 328.94 168.36 423.08 1,105.8
male cons 4.67 60.67 88.08 95.70 59.55 117.83 472.50
female cons 26.83 74.67 98.58 120.84 90.74 129.50 665.00

Table 1: Summary statistics

Figure 2 plots the distribution of the number of hours worked by men and women in the

sample. While men are most likely to work full time (± 40 hours per week), the probability

density curve for women peaks around 24, 32 and 40. Women are more likely to engage in

part–time work. A small fraction of women in the sample is not participating in the labour

market.
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Figure 2: Probability density of the number of hours worked (per week) in the sample

Assuming that full working days consist of 8 hours, the sample contains individuals

working 0 (less than 8 hours), 1 (less than 16 hours), 2 (less than 24 hours), 3 (less than

5Even in the presence of public consumption, this test is valid if individual utility is separable in private
consumption and leisure.

6See Talla Nobibon et al. (2011) for algorithms to deal with intra–household preference heterogeneity
when the nature of the commodities (private or public within the household) is unknown.
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x = 0 x = 1 x = 2 x = 3 x = 4 x = 5
male labour supply 0.04 0 0 0.08 0.58 0.31
female labour supply 0.06 0.06 0.31 0.30 0.23 0.05

Table 2: Labour supply decisions ranging from x = 0 to x = 5 days of paid market work:
relative frequency

32 hours), 4 (less than 40 hours) and 5 (40 hours or more) days per week.7 The results

are in Table 2. About 6 per cent of female household members do not participate in the

labour market whereas 4 per cent of male household members do not work. The difference

in terms of full–time work is very marked. While 89 per cent of men work at least 4

days per week, 73 per cent of women work less than 4 days per week. Subsection 3.2

examines the differences in labour supply conditional on wages, non–labour income and

individual preference heterogeneity in the sample. In this application, the commodities

vector q consists of private consumption and leisure (= the number of available days minus

x) and the price vector p consists of one (= the normalised price of the Hicksian aggregate)

and the individual’s wage.

3.2 Results

Given the abovementioned set–up with only two goods (consumption and leisure), WARP =

SARP and the minimum number of WARP–partitions τ̂ necessary to cover all individuals

is equivalent to the minimum number of preference types τ ∗. In what follows, the terms

‘WARP–partitions’ and ‘preference types’ are therefore interchangeable, although ‘prefer-

ence types’ mainly refer to the revealed–preference–consistent clusters (which are WARP–

partitions, by construction).

In a first step, the minimum number of male and female preference types is computed.

Individuals are assigned to types in a way that minimises the age variation per type, but

subject to the requirement that the minimum number of types is not exceeded, and that

individuals who violate WARP cannot belong to the same type. In a second step, the age

distribution within types is discussed in more detail. Finally, reservation wages are computed

per preference type, to investigate the interhousehold heterogeneity in the willingness to work

(full time).

7The numbers of hours worked in this sample are generally large because these numbers sum labour
supply and commuting time.

17



Preference heterogeneity Per gender, the minimum number of preference types in the

sample–in the sense of Definition 2–is computed.8 In practice, the analysis is based on two

graphs: one representing all men and the second representing all women as vertices. Pairwise

violations of WARP are represented as edges in the graphs. The chromatic numbers of these

graphs are computed by using the ‘color’ command in Matlab–MatGraph. The greedy

algorithm is solved in a few seconds and provides the exact minimum number of (male and

female) preference types.

Table 3 (row 1) presents the minimum number of preference types in the sample. There

are (at least) four male preference types and three female preference types. Applying the

algorithms of Crawford and Pendakur (2013) to the same data produces lower bounds of

one and upper bounds of four.9 Not surprisingly, the numbers in Table 3 lie within these

bounds, but the novel approach is more precise (even the greedy algorithm). In the current

setting, the novel numbers exactly identify the minimum number of utility functions in the

sense of Definition 2. The increased precision shows that the minimum number of male

and female preference types is distinct in the current sample. Finally, it turns out that no

WARP–partition of men Ñm can cover more than 84 per cent of the sample. Similarly, no

WARP–partition of women Ñ f can cover more than 80 per cent of the sample (see remark

2 in Subsection 2.2).

men women
4 3

[1,4] [1,4]
0.23 0.29
0.23 0.31
0.38 0.40
0.17

Table 3: Number of preference types (Crawford and Pendakur (2013) bounds between brack-
ets) and corresponding fraction of the sample covered

In a second step, all individuals are assigned to WARP–partitions that also minimise the

within–cluster sum of squared differences in age. Men are divided into four subsamples and

women are divided into three subsamples, in a way that minimises the distance between the

observed characteristics (i.e. age) of individuals who belong to the same preference type.10

8Recall that preference types are defined in the most general way. The utility functions of individuals of
different preference types may have nothing in common, apart from the typical assumptions of monotonicity
and concavity.

9For the implementation of the bounds by Crawford and Pendakur (2013) please see Boelaert (2015).
10The distance function is d(agen, ϕt) = ||agen − ϕt||2. The initial means ϕt are increasing percentiles of

the age distribution. Subsequently, updated means ϕ′
t equal the average age for individuals assigned to Vt.
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Of course, researchers may incorporate any desired set of observed characteristics in the

distance function. This has important consequences for the interpretation of the results. For

the following comparison with unconstrained clustering (see below) and for the exposition

of the preference types (in terms of the observed characteristic), it is useful to focus on one

continuous characteristic in this application.

The bottom four rows in Table 3 report the fraction of the sample covered by the selected

types. The male preference types cover 17–38 per cent of the men in the sample, while female

preference types cover 29–40 per cent of the women in the sample. The reported sample

shares show the probability of belonging to a particular type. Likewise, it is possible to

compute the probabilities of observing specific household combinations of preference types,

e.g. the likelihood of matches between male preference type 1 and female preference type 2.

An example is discussed in Appendix B.

Comparison with unconstrained k−means clustering The preference types reported

in Table 3 minimise the within–cluster sum of squares (WCSS) conditional on consistency, of

each type, with the Weak Axiom of Revealed Preference (WARP). By contrast, clusters from

standard k −means clustering minimise the WCSS under no restrictions (except the limit

on the number of clusters). Therefore, one may expect the WCSS to be considerably higher

in the revealed–preference–consistent clustering (operationalised in Problem 1) compared to

unconstrained clustering. The extent to which the revealed–preference–consistent clusters

and the standard unconstrained clusters are different, shows the impact of heterogeneity in

unobserved factors (specifically: unobserved preference heterogeneity) on the individuals’

labour supply and consumption choices.

Figure 3 presents the age distribution–in particular, the minimum, mean and maximum–

per (male and female) preference type. A distinction is made between the RP–consistent

clusters (in Table 3) and unconstrained k − means clusters.11 Let us first consider the

unconstrained clusters (graphs on the bottom row). Given the unidimensional set–up, it

comes as no surprise that the age distributions in different partitions are distinct (i.e. do

not overlap). In other words, the oldest individual of a ‘younger’ preference type is never

older than the youngest individual of an ‘older’ preference type. Let us then focus on the

actual preference types (graphs on the top row). The graphs show that the resulting age

distributions overlap. The highest age of a woman of the first type is also higher than

the mean age of women of the latter types. This implies that variation in the observed

consumption and labour supply choices cannot be explained on the basis of age (and gender)

11Note that the k−means clusters are obtained by running the program in Problem 1 without restrictions
1–2.
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age distribution per preference type
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alone, even if no parametric structure is imposed on the utility functions. As a result, the

partitioning problem is highly relevant.

Reservation wages Based on the abovementioned preference types, one can compute the

reservation wages associated with each preference type t, t′. The reservation wages associated

with full time work are computed as lower bounds on the wages that rationalise full time

work: w
¯
m(t) and w

¯
f (t′). This computation is entirely nonparametric and follows Varian

(1983). Details are in Appendix C. Attention is restricted to labour supply decisions at the

intensive margin (i.e. the decision to work part time versus full time) for two reasons. First

of all, a specific feature of the Dutch labour market is that women are less likely to work

full time than men. This was also reflected by the summary statistics in Subsection 3.1.

Second, the sample contains only a limited number of unemployed, due to the absence of

wage information. The analysis of unemployed may therefore lack empirical support.

Reservation wages associated with full time work, per preference type, are presented in

Table 4. The first two rows indicate the gender and preference type of individuals. The third

row reports the share of the sample covered by each type. Finally, the bottom row shows

the reservation wages w
¯
m(t) and w

¯
f (t′) conditional on the median non–labour income in the

sample.

men (g = M) women (g = F)
t 1 2 3 4 1 2 3

% sample 23 23 38 17 29 31 40
w
¯
g(t) 16 10 15 13 11 18 13

Table 4: Reservation wages associated with full time work

The reservation wages below which men are not willing to work full time vary between

10 and 16 EUR/hour. Similarly, the wages below which women are not willing to work

full time vary between 11 and 18 EUR/hour. The results show substantial interpersonal

variation in reservation wages. This emphasises the need for methods that can deal with

general forms of preference heterogeneity across the sample. The combination of reservation

wages (bottom row in Table 4) and sample shares (third row in Table 4) allows researchers

to bound the share of individuals who are willing to work full time for counterfactual wages

and non–labour income (Figure 4).

The interpretation of Figure 4 is as follows. For wages below 11 EUR/hour, no woman

in this sample can rationally supply her labour full time. By contrast, for wages between 11

and 13 EUR/hour, women of preference type 1 (29 per cent of the sample) may be willing to

work full time. In order to rationalise full time work by all women, wages equal to or higher
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Figure 4: Upper bound on the predicted share of full time work for men (in black) and women
(in grey)–conditional on wages, the median non–labour income and with general forms of
unobserved preference heterogeneity

than 18 EUR/hour are required. Let us finally compare these results to the share of men

who are willing to work full time. In order for all men to work five days per week, wages of

16 EUR/hour are necessary.

What can we learn from these results? The above application uses the methods from

Subsections 2.2 and 2.3 for a relatively homogeneous sample. Attention is restricted to

childless couples, excluding also students, pensioners, self–employed and job seekers. One

may therefore argue that household members are relatively homogeneous in terms of their

total available time. In this sample, it is found that 31 per cent of women are unwilling to

work full time for wages below 18 EUR/hour–conditional on receiving the median non–labour

income in the sample. This is in sharp contrast with the labour supply by men, who are all

willing to work full time for wages of 16 EUR/hour, conditional on the same counterfactual

situation. This indicates that the high share of part time work by women in the Dutch

labour market is partly driven by gender–related preference heterogeneity. Interestingly, the

results are relatively robust to debatable pooling assumptions across households, given that

reservation wages are computed per preference type, and preference types may differ in terms

of both observed and unobserved characteristics. If the number of relevant preference types

in the population is indeed limited (see e.g. Crawford and Pendakur (2013)), it is possible

to extend and refine Figure 4 to include all types. The corresponding graph would then shed

light on labour supply elasticities and, potentially, optimal labour market policies. Finally, a

more rigorous analysis of labour supply elasticities should also address heterogeneity in job

market opportunities (beside heterogeneity in preferences), which is especially relevant when
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comparing childless couples to households with children, job seekers to employed, etc. In a

first step, researchers may partition a sample on the basis of general household characteristics

(such as the number of children). In a second step, the novel revealed–preference–consistent

clustering could be applied to household members who face similar job market opportunities.

4 Conclusion

First, the idea of describing choice by multiple rationales (by Kalai et al. (2002)) is brought

into practice, to compute the minimum number of utility functions necessary to rationalise

consumption and labour supply choices in the cross–section. Complementary to Crawford

and Pendakur (2013), who used approximation algorithms to compute the minimum number

of partitions necessary to break violations of the Generalised Axiom of Revealed Preference

(GARP), the current study uses insights from graph theory to efficiently compute the par-

titions necessary to break violations of the Weak Axiom of Revealed Preference (WARP).

This follows a suggestion by Apesteguia and Ballester (2010), who argued that the problem

of computing the minimum number of rationales is very complex, and that insights from

graph theory may be helpful to address the problem. In a first step, a graph is constructed

in which vertices represent individuals and edges represent pairwise violations of WARP. In

a second step, it is shown that the minimum number of partitions necessary to break all

WARP violations is equivalent to the chromatic number applied to this graph. The chro-

matic number always bounds the minimum number of utility functions in the sample from

below, and it is equivalent to the minimum number of utility functions in the sample as long

as WARP = SARP . Furthermore, a wide range of algorithms from the computer science

and operations research literature–to compute the chromatic number–can be applied to solve

this problem, both approximately (using a greedy algorithm) and optimally.

Second, the current paper deals with the recovery of sets of individuals with homogeneous

preferences (in contrast to Crawford and Pendakur (2013) who focused mainly on computing

the number of sets). To this end, variation in observed characteristics is used. In particular,

the nonparametric (revealed preference) conditions are complemented with an objective func-

tion that minimises observed dissimilarities within each preference type. On the one hand,

this objective function provides the additional structure that is necessary to select one partic-

ular partitioning of the sample. On the other hand, this novel revealed–preference–consistent

clustering builds the bridge between cluster analysis and revealed preference theory (in casu:

WARP). Indeed, dissimilarities in observed demographic variables within clusters are also

minimised, but in a theoretically robust way. This contrasts with the traditional clustering

approach, in which clusters need not be consistent with the utility maximisation hypothesis.
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The methods are applied to consumption and labour supply choices by Dutch households

(LISS). The cross–sectional variation in wages provides strong empirical bite. It turns out

that there are four types of men and three types of women in the sample, which lies between

the lower and upper bounds (one and four) generated by Crawford and Pendakur (2013)’s

algorithm. Subsequently, this paper focused on the recovery of reservation wages–associated

with full time work–per preference type. Towards this end, individuals were assigned to

(three or four) preference types in a way that maintains consistency with the revealed pref-

erence axioms and minimises the difference in observables (in casu age). The results indicated

considerable variation in the reservation wages across types.
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A Data

The dataset combines information from different studies available on the LISS website. In-

formation on household characteristics is taken from the Background Variables, Family and

Household and Work and Schooling sections. Specifically, the household members’ ages

are reported in Background Variables. Work and Schooling and Economic Situation: In-

come contain the necessary data to construct wages, by dividing the total labour income

(from Economic Situation: Income) by the average number of hours worked (from Work

and Schooling). This includes the income and hours worked of all jobs. If available, the

wages of household members who do not work (i.e. when the number of hours worked is 0)

are set equal to the corresponding wages in their last job. Endogeneity issues related to the

construction of wages are avoided given that wages are based on the average number of hours
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worked whereas labour supply is based on the current number of hours worked (as reported

in the time use section). Finally, the Time Use and Consumption section contains informa-

tion on private consumption (by the household members) and their time use decisions. The

respondents reported private consumption on an average monthly basis. This is converted to

weekly data. Expenditure includes food and beverages, tobacco products, clothing, personal

and medical care products and services, leisure time expenditure, schooling, gifts, and other

expenditure. In addition, the Time Use and Consumption module collects data on time–use

decisions, that is, leisure time and hours spent on market work in a particular week. For a

detailed discussion of a similar sample from LISS, please see Cherchye et al. (2012).

B Matching

As an extension, the presented methodology can also be used to compute the probability

that men and women of particular preference types match. Table 5 shows the likelihood that

a man of type Mi forms a couple with a woman of type Fj in the sample. Intuitively, one

would expect higher probability densities along the diagonal because of the age characteristic:

people of similar age are more likely to match. This is confirmed in Table 5. For instance,

22 per cent of the households in the sample are characterised by the youngest male (M1)

and the youngest female (F1) preferences. The reported probabilities may be valuable

in applications of collective labour supply models in the spirit of Chiappori (1988, 1992).

Household members have different preferences, but each pair of preference orderings is stable

for a subset of the data. Similarly, the information in Table 5 seems useful for matching

models and theories of assortative mating.

F1 F2 F3
M1 0.22 0.01 0
M2 0.06 0.12 0.05
M3 0.02 0.14 0.22
M4 0 0.04 0.13

Table 5: Relative frequency of households in which men belong to the Mi preference type
and women belong to the Fj preference type

C Nonparametric bounds on reservation wages

In this study, reservation wages indicate lower bounds on the wages that rationalise full time

work. Given that reservation wages stem from individual preferences, these wages differ
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across the preference types. To compute nonparametric lower bounds on the wages that

rationalise full time work, a procedure by Varian (1983) is followed. Let w
¯
(t) represent the

reservation wage associated with individuals of preference type t. Furthermore, q̄1 captures

the median private expenditure and q̄2 is the available leisure in case of full time work.

For a ‘representative’ individual of type t who works full time (and has available leisure

q̄2), compute w
¯
(t) as the minimum wage p2 that is still consistent with WARP (i.e. that still

rationalises full time work).

w
¯
(t) = min

p2
p2

s.t.

∀i ∈ Vt : q
1
i + p2i q

2
i ≥ q̄1 + p2i q̄

2 ⇒ q̄1 + p2q̄2 < q1i + p2q2i .

The first part of the ‘if–then’ condition can be verified immediately, for it is fully defined

by observations of individuals i and predetermined levels of q̄1 and q̄2–the latter representing

available leisure when the individual works full time. All observations i for which this

opening condition holds are ‘revealed preferred’ over q̄1 and q̄2. Rationality then requires

that individuals minimise expenditure over this better–than set. As a result, p2 must be

such that the bundle (q̄1, q̄2) is cheaper than the ‘revealed preferred’ bundles (q1i , q
2
i ). Given

q̄2 ≤ q2i , p
2 is typically bounded from below.
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